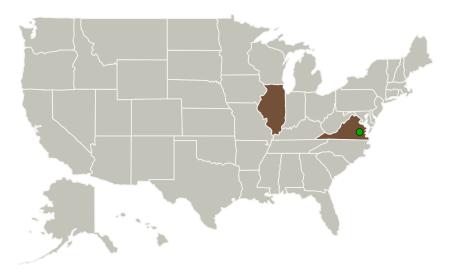
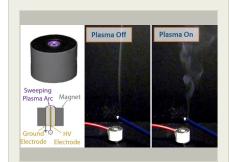
Cyclotronic Plasma Actuator with Arc-Magnet for Active Flow Control, Phase I



Completed Technology Project (2016 - 2016)


Project Introduction

CU Aerospace and team partner the University of Illinois at Urbana-Champaign propose to develop a new type of plasma-based flow control actuator, which uses a high-voltage electrode that arcs to a cylindrical grounded electrode within a magnetic field. The result is that an arc plasma can be produced, with a Lorentz force that creates a plasma disc (similar concept to a cyclotron). The thought behind this concept is that the thermal actuator authority provided by the plasma arc is coupled with an induced swirl component into a boundary-layer flow, which will enhance mixing and allow flows to remain attached in high adverse pressure gradients. Effectively, the proposed actuator would function like vortex generators that one could enable or disable on command. This subsystem demonstration will pioneer a family of devices to address a notoriously difficult problem in active flow control.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
CU Aerospace, LLC	Lead Organization	Industry	Champaign, Illinois
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Cyclotronic Plasma Actuator with Arc-Magnet for Active Flow Control, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	
Technology Areas	
Target Destinations	3

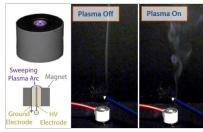
Cyclotronic Plasma Actuator with Arc-Magnet for Active Flow Control, Phase I

Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations		
Illinois	Virginia	

Project Transitions

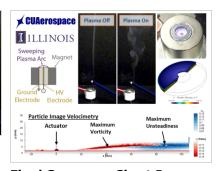
June 2016: Project Start



December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139684)


Images

Briefing Chart Image

Cyclotronic Plasma Actuator with Arc-Magnet for Active Flow Control, Phase I

(https://techport.nasa.gov/imag e/132232)

Final Summary Chart Image

Cyclotronic Plasma Actuator with Arc-Magnet for Active Flow Control, Phase I Project Image (https://techport.nasa.gov/image/132629)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

CU Aerospace, LLC

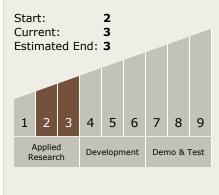
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

David L Carroll

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Cyclotronic Plasma Actuator with Arc-Magnet for Active Flow Control, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- TX15 Flight Vehicle Systems
 □ TX15.1 Aerosciences
 □ TX15.1.5 Propulsion
 Flowpath and
 Interactions
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

